skip to main content


Search for: All records

Creators/Authors contains: "Íñiguez, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 6, 2024
  2. Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching. 
    more » « less
  3. Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Piezoresponse force microscopy (PFM) is widely used for characterization and exploration of the nanoscale properties of ferroelectrics. However, quantification of the PFM signal is challenging due to the convolution of various extrinsic and intrinsic contributions. Although quantification of the PFM amplitude signal has received considerable attention, quantification of the PFM phase signal has not been addressed. A properly calibrated PFM phase signal can provide valuable information on the sign of the local piezoelectric coefficient—an important and nontrivial issue for emerging ferroelectrics. In this work, two complementary methodologies to calibrate the PFM phase signal are discussed. The first approach is based on using a standard reference sample with well‐known independently measured piezoelectric coefficients, while the second approach exploits the electrostatic sample–cantilever interactions to determine the parasitic phase offset. Application of these methodologies to studies of the piezoelectric behavior in ferroelectric HfO2‐based thin‐film capacitors reveals intriguing variations in the sign of the longitudinal piezoelectric coefficient,d33,eff. It is shown that the piezoelectric properties of the HfO2‐based capacitors are inherently sensitive to their thickness, electrodes, as well as deposition methods, and can exhibit wide variations including ad33,effsign change within a single device.

     
    more » « less
  7. Abstract

    In the ferroelectric devices, polarization control is usually accomplished by application of an electric field. In this paper, we demonstrate optically induced polarization switching in BaTiO3-based ferroelectric heterostructures utilizing a two-dimensional narrow-gap semiconductor MoS2as a top electrode. This effect is attributed to the redistribution of the photo-generated carriers and screening charges at the MoS2/BaTiO3interface. Specifically, a two-step process, which involves formation of intra-layer excitons during light absorption followed by their decay into inter-layer excitons, results in the positive charge accumulation at the interface forcing the polarization reversal from the upward to the downward direction. Theoretical modeling of the MoS2optical absorption spectra with and without the applied electric field provides quantitative support for the proposed mechanism. It is suggested that the discovered effect is of general nature and should be observable in any heterostructure comprising a ferroelectric and a narrow gap semiconductor.

     
    more » « less